Identifying important risk factors for survival in patient with systolic heart failure using random survival forests.
نویسندگان
چکیده
BACKGROUND Heart failure survival models typically are constructed using Cox proportional hazards regression. Regression modeling suffers from a number of limitations, including bias introduced by commonly used variable selection methods. We illustrate the value of an intuitive, robust approach to variable selection, random survival forests (RSF), in a large clinical cohort. RSF are a potentially powerful extensions of classification and regression trees, with lower variance and bias. METHODS AND RESULTS We studied 2231 adult patients with systolic heart failure who underwent cardiopulmonary stress testing. During a mean follow-up of 5 years, 742 patients died. Thirty-nine demographic, cardiac and noncardiac comorbidity, and stress testing variables were analyzed as potential predictors of all-cause mortality. An RSF of 2000 trees was constructed, with each tree constructed on a bootstrap sample from the original cohort. The most predictive variables were defined as those near the tree trunks (averaged over the forest). The RSF identified peak oxygen consumption, serum urea nitrogen, and treadmill exercise time as the 3 most important predictors of survival. The RSF predicted survival similarly to a conventional Cox proportional hazards model (out-of-bag C-index of 0.705 for RSF versus 0.698 for Cox proportional hazards model). CONCLUSIONS An RSF model in a cohort of patients with heart failure performed as well as a traditional Cox proportional hazard model and may serve as a more intuitive approach for clinicians to identify important risk factors for all-cause mortality.
منابع مشابه
Comparison of Random Survival Forests for Competing Risks and Regression Models in Determining Mortality Risk Factors in Breast Cancer Patients in Mahdieh Center, Hamedan, Iran
Introduction: Breast cancer is one of the most common cancers among women worldwide. Patients with cancer may die due to disease progression or other types of events. These different event types are called competing risks. This study aimed to determine the factors affecting the survival of patients with breast cancer using three different approaches: cause-specific hazards regression, subdistri...
متن کاملProbability of obstructive sleep apnea in male patients with systolic heart failure and some related factors
Background and Purpose: Sleep breathing disorders have a negative impact on the illness outcome and quality of life in patients with heart failure. This study was conducted to investigate the probability of obstructive sleep apnea in men with heart failure and some related factors. Method: This was a cross-sectional study conducted on 100 male patients with systolic heart failure selected throu...
متن کاملIdentifying Important Risk Factors for Survival in Kidney Graft Failure Patients Using Random Survival Forests
BACKGROUND Kidney transplantation is the best alternative treatment for end-stage renal disease. Several studies have been devoted to investigate predisposing factors of graft rejection. However, there is inconsistency between the results. The objective of the present study was to utilize an intuitive and robust approach for variable selection, random survival forests (RSF), and to identify imp...
متن کاملSurvival analysis of thalassemia major patients using Cox, Gompertz proportional hazard and Weibull accelerated failure time models
Background: Thalassemia major (TM) is a severe disease and the most common anemia worldwide. The survival time of the disease and its risk factors are of importance for physicians. The present study was conducted to apply the semi-parametric Cox PH model and use parametric proportional hazards (PH) and accelerated failure time (AFT) models to identify the risk factors related to survival of TM ...
متن کاملIdentification of Factors Affecting Metastatic Gastric Cancer Patients’ Survival Using the Random Survival Forest and Comparison with Cox Regression Model
Background and Objectives: In survival analysis, using the Cox model to determine the effective factors requires the assumptions whose failure of leads to biased results. The aim of this paper was to determine the factors affecting the survival of metastatic gastric cancer patients using the non-parametric method of Randomized Survival Forest (RSF) model and to compare its result with the Cox m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation. Cardiovascular quality and outcomes
دوره 4 1 شماره
صفحات -
تاریخ انتشار 2011